Desain Awal Reaktor untuk Produksi Nanopartikel Emas dengan Metode Turkevich pada Skala Industri

Authors

  • Thyta Medina Salsabila Erlangga Universitas Pendidikan Indonesia
  • Asep Bayu Dani Nandiyanto Universitas Pendidikan Indonesia
  • Risti Ragadhita Universitas Pendidikan Indonesia

DOI:

https://doi.org/10.55331/jutmi.v2i2.27

Keywords:

nanopartikel emas, desain reaktor, reaktor batch, skala industri, pembelajaran

Abstract

Penelitian ini bertujuan untuk merancang dan menganalisis desain reaktor tipe batch dalam mengoptimalkan produksi nanopartikel emas dalam skala industri. Metode yang digunakan dalam perancangan reactor ini adalah analisis komputasi terhadap perhitungan reactor, termasuk pengadukan dan neraca massa sebagai perhitungan awal dengan menggunakan aplikasi Microsoft excel secara manual. Hasil perhitungan menunjukkan bahwa spesifikasi reactor yang dirancang ini memiliki volume reaktor 21.7335 ft3, tinggi silinder 13.4612 in, tinggi larutan dalam silinder 8.9046 in, diameter bejana 73.2984 in, tekanan desain 9.9978 psig, panjang impeller 9.1840 in, panjang poros 10.5418 in, dengan daya pengadukan 62.5228 Hp. Analisis desain reaktor ini menjadi tahapan penting dalam perancangan proses produksi dalam skala industri, dimana hasil spesifikasi dari reaktor hasil perancangan tersebut selain dapat digunakan untuk penyesuaian reaktor dengan produk, juga dapat digunakan sebagai acuan dalam biaya produksi. Hasil analisis komputasi dan perhitungan yang dilakukan pada perancangan reaktor dalam studi ini dapat dijadikan acuan dan dapat diterapkan dalam perancangan analisis kinerja reactor sebagai media pembelajaran termasuk mekanisme operasi pada proses produksi.

References

M. Abbas, H. H. Susapto, and C. A. E. Hauser, “Synthesis and Organization of Gold-Peptide Nanoparticles for Catalytic Activities,” ACS Omega, vol. 7, no. 2, pp. 2082–2090, 2022, doi: 10.1021/acsomega.1c05546.

W. C. Song, B. Kim, S. Y. Park, G. Park, and J. W. Oh, “Biosynthesis of silver and gold nanoparticles using Sargassum horneri extract as catalyst for industrial dye degradation,” Arab. J. Chem., vol. 15, no. 9, p. 104056, 2022, doi: 10.1016/j.arabjc.2022.104056.

T. D. Tran, M. T. T. Nguyen, H. V. Le, D. N. Nguyen, Q. D. Truong, and P. D. Tran, “Gold nanoparticles as an outstanding catalyst for the hydrogen evolution reaction,” Chem. Commun., vol. 54, no. 27, pp. 3363–3366, 2018, doi: 10.1039/c8cc00038g.

D. Lin, R. G. Pillai, W. E. Lee, and A. B. Jemere, “An impedimetric biosensor for E. coli O157:H7 based on the use of self-assembled gold nanoparticles and protein G,” Microchim. Acta, vol. 186, no. 3, pp. 1–9, 2019, doi: 10.1007/s00604-019-3282-3.

X. Lu, X. Dong, K. Zhang, X. Han, X. Fang, and Y. Zhang, “A gold nanorods-based fluorescent biosensor for the detection of hepatitis B virus DNA based on fluorescence resonance energy transfer,” Analyst, vol. 138, no. 2, pp. 642–650, 2013, doi: 10.1039/c2an36099c.

M. A. MacKey, M. R. K. Ali, L. A. Austin, R. D. Near, and M. A. El-Sayed, “The most effective gold nanorod size for plasmonic photothermal therapy: Theory and in vitro experiments,” J. Phys. Chem. B, vol. 118, no. 5, pp. 1319–1326, 2014, doi: 10.1021/jp409298f.

J. Cheng, Y. J. Gu, S. H. Cheng, and W. T. Wong, “Surface functionalized gold nanoparticles for drug delivery,” J. Biomed. Nanotechnol., vol. 9, no. 8, pp. 1362–1369, 2013, doi: 10.1166/jbn.2013.1536.

J. Im et al., “Functionalized Gold Nanoparticles with a Cohesion Enhancer for Robust Flexible Electrodes,” ACS Appl. Nano Mater., vol. 5, no. 5, pp. 6708–6716, 2022, doi: 10.1021/acsanm.2c00742.

C. Kamaraj et al., “Green synthesis of gold nanoparticles using Gracilaria crassa leaf extract and their ecotoxicological potential: Issues to be considered,” Environ. Res., vol. 213, 2022, doi: 10.1016/j.envres.2022.113711.

M. Sivakavinesan et al., “Citrus limetta Risso peel mediated green synthesis of gold nanoparticles and its antioxidant and catalytic activity,” J. King Saud Univ. - Sci., vol. 34, no. 7, p. 102235, 2022, doi: 10.1016/j.jksus.2022.102235.

M. Hosny, M. Fawzy, Y. A. El-Badry, E. E. Hussein, and A. S. Eltaweil, “Plant-assisted synthesis of gold nanoparticles for photocatalytic, anticancer, and antioxidant applications,” J. Saudi Chem. Soc., vol. 26, no. 2, p. 101419, 2022, doi: 10.1016/j.jscs.2022.101419.

A. Aji, D. Oktafiani, A. Yuniarto, and A. K. Amin, “Biosynthesis of gold nanoparticles using Kapok (Ceiba pentandra) leaf aqueous extract and investigating their antioxidant activity,” J. Mol. Struct., vol. 1270, no. August, p. 133906, 2022, doi: 10.1016/j.molstruc.2022.133906.

N. Ahmad, S. Sharma, and R. Rai, “Rapid green synthesis of silver and gold nanoparticles using peels of Punica granatum,” Adv. Mater. Lett., vol. 3, no. 5, pp. 376–380, 2012, doi: 10.5185/amlett.2012.6357.

S. Ayyoub et al., “Biosynthesis of gold nanoparticles using leaf extract of Dittrichia viscosa and in vivo assessment of its anti-diabetic efficacy,” Drug Deliv. Transl. Res., vol. 12, no. 12, pp. 2993–2999, 2022, doi: 10.1007/s13346-022-01163-0.

A. Folorunso et al., “Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata,” J. Nanostructure Chem., vol. 9, no. 2, pp. 111–117, 2019, doi: 10.1007/s40097-019-0301-1.

S. Valsalam, P. Agastian, G. A. Esmail, A. K. M. Ghilan, N. A. Al-Dhabi, and M. V. Arasu, “Biosynthesis of silver and gold nanoparticles using Musa acuminata colla flower and its pharmaceutical activity against bacteria and anticancer efficacy,” J. Photochem. Photobiol. B Biol., vol. 201, p. 111670, 2019, doi: 10.1016/j.jphotobiol.2019.111670.

A. E. Adebayo et al., “Biosynthesis of silver, gold and silver–gold alloy nanoparticles using Persea americana fruit peel aqueous extract for their biomedical properties,” Nanotechnol. Environ. Eng., vol. 4, no. 1, 2019, doi: 10.1007/s41204-019-0060-8.

H. N. Verma, P. Singh, and R. M. Chavan, “Gold nanoparticle: Synthesis and characterization,” Vet. World, vol. 7, no. 2, pp. 72–77, 2014, doi: 10.14202/vetworld.2014.72-77.

F. Schulz, T. Homolka, N. G. Bastús, V. Puntes, H. Weller, and T. Vossmeyer, “Little adjustments significantly improve the Turkevich synthesis of gold nanoparticles,” Langmuir, vol. 30, no. 35, pp. 10779–10784, 2014, doi: 10.1021/la503209b.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B, vol. 110, no. 32, pp. 15700–15707, 2006, doi: 10.1021/jp061667w.

M. Shah, V. Badwaik, Y. Kherde, H. K. Waghwani, T. Modi, and Z. P. Aguilar, “Table of contents 1.,” no. 8, pp. 1320–1344, 2014.

S. Ayyappan, R. S. Gopalan, G. N. Subbanna, and C. N. R. Rao, “Nanoparticles of Ag , Au , Pd , and Cu produced by alcohol,” J. Mater. Res., vol. 12, no. 2, pp. 398–401, 1997.

S. Panigrahi, S. Kundu, S. K. Ghosh, S. Nath, and T. Pal, “General method of synthesis for metal nanoparticles,” J. Nanoparticle Res., vol. 6, no. 4, pp. 411–414, 2004, doi: 10.1007/s11051-004-6575-2.

A. V. Simakin, V. V. Voronov, N. A. Kirichenko, and G. A. Shafeev, “Nanoparticles produced by laser ablation of solids in liquid environment,” Laser Process. Adv. Mater. Laser Microtechnologies, vol. 5121, p. 212, 2003, doi: 10.1117/12.515574.

H. R. Ghorbani, “A review of methods for synthesis of Al nanoparticles,” Orient. J. Chem., vol. 30, no. 4, pp. 1941–1949, 2014, doi: 10.13005/ojc/300456.

E. Vanecht, K. Binnemans, J. W. Seo, L. Stappers, and J. Fransaer, “Growth of sputter-deposited gold nanoparticles in ionic liquids,” Phys. Chem. Chem. Phys., vol. 13, no. 30, pp. 13565–13571, 2011, doi: 10.1039/c1cp20552h.

M. S. Jameel, A. A. Aziz, and M. A. Dheyab, “Comparative analysis of platinum nanoparticles synthesized using sonochemical-assisted and conventional green methods,” Nano-Structures and Nano-Objects, vol. 23, p. 100484, 2020, doi: 10.1016/j.nanoso.2020.100484.

N. Q. Hien, D. Van Phu, N. N. Duy, and L. A. Quoc, “Radiation synthesis and characterization of hyaluronan capped gold nanoparticles,” Carbohydr. Polym., vol. 89, no. 2, pp. 537–541, 2012, doi: 10.1016/j.carbpol.2012.03.041.

M. Wuithschick et al., “Turkevich in New Robes: Key Questions Answered for the Most Common Gold Nanoparticle Synthesis,” ACS Nano, vol. 9, no. 7, pp. 7052–7071, 2015, doi: 10.1021/acsnano.5b01579.

J. Dong, P. L. Carpinone, G. Pyrgiotakis, P. Demokritou, and B. M. Moudgil, “Synthesis of precision gold nanoparticles using Turkevich method,” KONA Powder Part. J., vol. 37, no. 37, pp. 224–232, 2020, doi: 10.14356/kona.2020011.

J. Zhang and R. Smith, “Design and optimisation of batch and semi-batch reactors,” Chem. Eng. Sci., vol. 59, no. 2, pp. 459–478, 2004, doi: 10.1016/j.ces.2003.10.004.

J. D. P. Araújo, C. A. Grande, and A. E. Rodrigues, “Vanillin production from lignin oxidation in a batch reactor,” Chem. Eng. Res. Des., vol. 88, no. 8, pp. 1024–1032, 2010, doi: 10.1016/j.cherd.2010.01.021.

M. Atasoy, O. Eyice, and Z. Cetecioglu, “A comprehensive study of volatile fatty acids production from batch reactor to anaerobic sequencing batch reactor by using cheese processing wastewater,” Bioresour. Technol., vol. 311, no. May, p. 123529, 2020, doi: 10.1016/j.biortech.2020.123529.

W. H. Chen, S. Sung, and S. Y. Chen, “Biological hydrogen production in an anaerobic sequencing batch reactor: pH and cyclic duration effects,” Int. J. Hydrogen Energy, vol. 34, no. 1, pp. 227–234, 2009, doi: 10.1016/j.ijhydene.2008.09.061.

P. T. Benavides and U. Diwekar, “Studying various optimal control problems in biodiesel production in a batch reactor under uncertainty,” Fuel, vol. 103, pp. 585–592, 2013, doi: 10.1016/j.fuel.2012.06.089.

P. Valle, A. Velez, P. Hegel, G. Mabe, and E. A. Brignole, “Biodiesel production using supercritical alcohols with a non-edible vegetable oil in a batch reactor,” J. Supercrit. Fluids, vol. 54, no. 1, pp. 61–70, 2010, doi: 10.1016/j.supflu.2010.03.009.

B. K. Highina, I. M. Bugaje, and B. Umar, “Biodiesel production from Jatropha caucus oil in a batch reactor using zinc oxide as catalyst,” J. Pet. Technol. Altern. Fuels, vol. 2, no. 9, pp. 146–149, 2011, [Online]. Available: http://www.academicjournals.org/JPTAF

K. Do Kim, T. J. Lee, and H. T. Kim, “Optimal conditions for synthesis of TiO2 nanoparticles in semi-batch reactor,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 224, no. 1–3, pp. 1–9, 2003, doi: 10.1016/S0927-7757(03)00256-5.

B. Ma et al., “Magnetic Fe3O4nanoparticles induced effects on performance and microbial community of activated sludge from a sequencing batch reactor under long-term exposure,” Bioresour. Technol., vol. 225, pp. 377–385, 2017, doi: 10.1016/j.biortech.2016.11.130.

L. Gutierrez, L. Gomez, S. Irusta, M. Arruebo, and J. Santamaria, “Comparative study of the synthesis of silica nanoparticles in micromixer-microreactor and batch reactor systems,” Chem. Eng. J., vol. 171, no. 2, pp. 674–683, 2011, doi: 10.1016/j.cej.2011.05.019.

O. Sawai, T. Nunoura, and K. Yamamoto, “Supercritical water gasification of sewage sludge using bench-scale batch reactor: Advantages and drawbacks,” J. Mater. Cycles Waste Manag., vol. 16, no. 1, pp. 82–92, 2014, doi: 10.1007/s10163-013-0144-7.

Downloads

Published

2023-08-05

How to Cite

Erlangga, T. M. S., Asep Bayu Dani Nandiyanto, & Risti Ragadhita. (2023). Desain Awal Reaktor untuk Produksi Nanopartikel Emas dengan Metode Turkevich pada Skala Industri. Jurnal Teknik Mesin Dan Industri (JuTMI), 2(2), 38–44. https://doi.org/10.55331/jutmi.v2i2.27

Issue

Section

Articles