Pengaruh Aktif Alkali Charge Terhadap Pola Korelasi Derajat Delignifikasi dan Polimerisasi Pada Proses Pulping

Authors

  • Bambang Irawan Sekolah Tinggi Teknologi Nasional, Jambi
  • Imam Bayhaqi Sekolah Tinggi Teknologi Nasional Jambi
  • Danawati Hari Prajitno Institut Teknologi Sepuluh November Surabaya

DOI:

https://doi.org/10.55331/jutmi.v1i1.7

Keywords:

Active alkali charge, degree of delignification, degree of polymerization

Abstract

Delignification and depolymerization are great concerns in the cooking process. This research used eucalyptus and acacia mangium with active alkali charge of 16% to 20% and 1% variation. Active alkali charge influences the degree of delignification and degree of polymerization.  Every 1% AA charge increase could increase the degree of delignification in eucalyptus and acacia mangium of 0.40 and 0.85% respectively. Every 1% AA increase can decrease DP in eucalyptus and acacia mangium of 3.32% and 7.04% respectively. Reduce of residual lignin on eucalyptus and acacia mangium of 0,4% and 0,7% respectively followed by increase of delignification degree by 1,9% and 3,0% respectively. The correlations between the delignification and polymerization degree in the eucalyptus and acacia mangium were y(e) = -119.74x + 12135 and y(a) = - 149.63x + 14716 respectively.

 

References

Hu, J., Zhang, Q. & Lee, D.-J., 20178. Kraft lignin biorefinery: A perspective. Bioresource Technology, 247, pp.1181–1183.

García, A., Toledano, A., Serrano, L., Egues, L., Gonzales, M., Marin, F., Labidi, J., 2009. Characterization of lignins obtained by selective precipitation. Separation and Purification Technology, 68(2), pp.193–198.

Santos, R.B., Capanema, E, A., Balakshin, M, Y., Chang, H, M., Jamel, H., 2011, Effect of Hardwoods Characteristic on Kaft Puliping Process: Emphasis on Lignin Structure, Hardwood lignin vs Pulping, Bio Resources 6(4), 3623-3637.

Denilson, 2010, Selective Acetone-Water Delignification of Eucalyptus urograndis: An Alternative Towards the Biorefinery Approach. The Open Agriculture Journal, 4.

Ji, Y., Wheeler, M.C. & van Heiningen, A., 2007. Oxygen delignification kinetics: CSTR and batch reactor comparison. AIChE Journal, 53(10), pp.2681–2687.

Behin, J. & Zeyghami, M., 2009. Dissolving pulp from corn stalk residue and waste water of Merox unit. Chemical Engineering Journal, 152(1), pp.26–35.

Violette, S, M, 2003, Oxygen Delignification Kinetics and Selectivity Improvement, Electronic theses and Dissertations, 233. http://digitalcommons.library,umaine.edu/etd/233

Wistara, N.J, Carolina, A., Pulungan, W,S., Emil, N., Lee, S, W., Kim, N, H., 2015. Effect of Tree Age and Active Alkali on Kraft Pulping of White Jabon. Journal of the Korean Wood Science and Technology, 43(5), pp.566–577.

Kasaai M,R, 2007, Calculation of Mark-Howink-Sakurada (MHS) equation viscosmetric constant for chitosan in any solvent-temperature system using experimental reported viscosmteric constants data, ScienceDirect, Carbohydrate Polymer 68 (2007) 477-488.

Yamane, 2015. Dissolution of cellulose nanofibers in aqueous sodium hydroxide solution. Nordic Pulp and Paper Research Journal, 30(01), pp.092–098.

TAPPI Test Method, 1999, TPPI 236-cm 85, Kappa number of pulp, TAPPI Press, Canada.

TAPPI Test Method, 2004, TAPPI 230-om 04, Viskosity of pulp (capillary viscometer method), TAPPI Press, Canada.

TAPPI Test Method, 2002, TAPPI T-222-om-15, Acid-insoluble lignin in wood and pulp, TAPPI Press, Canada.

Downloads

Published

2022-01-05

How to Cite

Irawan, B., Bayhaqi, I., & Prajitno, D. H. (2022). Pengaruh Aktif Alkali Charge Terhadap Pola Korelasi Derajat Delignifikasi dan Polimerisasi Pada Proses Pulping. Jurnal Teknik Mesin Dan Industri (JuTMI), 1(1), 19–24. https://doi.org/10.55331/jutmi.v1i1.7

Most read articles by the same author(s)