Evaluasi Kinerja Boiler Melalui Analisis Losses Guna Optimalisasi Operasional di Pabrik Kelapa Sawit

Authors

  • Imam Bayhaqi Sekolah Tinggi Teknologi Nasional Jambi

DOI:

https://doi.org/10.55331/jutmi.v5i1.80

Keywords:

Boiler, Efisiensi Termal, Heat

Abstract

Penelitian ini mengevaluasi kinerja termal boiler di Pabrik Kelapa Sawit (PKS) melalui observasi lapangan selama tujuh hari. Masalah utama yang diidentifikasi adalah konsumsi bahan bakar yang boros dan fluktuasi tekanan uap. Metodologi yang digunakan meliputi Direct Method untuk menghitung efisiensi riil dan Indirect Method untuk memetakan enam faktor kehilangan panas (heat losses). Hasil perhitungan menunjukkan efisiensi rata-rata boiler hanya mencapai 46,28%, jauh di bawah standar ideal. Berdasarkan Metode Tidak Langsung, penyebab utama inefisiensi adalah kerugian gas buang kering (L1​) sebesar 16,99%, pembakaran tidak sempurna (L5​) sebesar 15%, serta tingginya kadar air bahan bakar (L3​) sebesar 8,99%. Temuan ini mengonfirmasi bahwa degradasi performa disebabkan oleh perpindahan panas yang tidak optimal dan kualitas biomassa yang rendah. Langkah strategis yang diusulkan adalah penguatan manajemen pengeringan bahan bakar dan optimalisasi jadwal soot blowing untuk meningkatkan efisiensi operasional.

Kata kunci: Boiler, Efisiensi Termal, Heat Losses.

References

W. Andika, B. Mulyara, Z. Effendi, and A. S. Sembiring, “Analisa Kehilangan Panas Secara Konduksi Pada Saluran Steam (Pipa) Dari Turbin Ke Back Pressure Vessel (Bpv) Pada Pabrik Kelapa Sawit (Pks) Kapasitas 45 Ton/Jam,” J. Agro Fabr., Dec. 2023, doi: 10.47199/jaf.v5i2.198.

I. B. Rahardja and M. Masnia, “The Optimization of Capacity Boiler Efficiency 26 Tons/Hours with Fuel Alumination And Statistical Product and Service Solutions (Spss) Analysis,” ADI J. Recent Innov. AJRI, May 2020, doi: 10.34306/ajri.v2i2.70.

R. A. Sinuraya, Z. Effendi, and S. Aisyah, “Analisa Kehilangan Panas Secara Konveksi Pada Saluran Steam (Pipa) Dari Turbin Ke BPV (Back Pressure Vessel) Pada PKS (Pabrik Kelapa Sawit) Kapasitas 45 Ton/Jam Studi Kasus Turangie Palm Oil Mill PT. PP. London Sumatra Indonesia, Tbk,” Turbo J. Program Studi Tek. Mesin, Dec. 2023, doi: 10.24127/trb.v12i2.2922.

Z. Husain, Z. Zainal, and M. Abdullah, “Analysis of biomass-residue-based cogeneration system in palm oil mills,” Biomass Bioenergy, vol. 24, pp. 117–124, Feb. 2003, doi: 10.1016/s0961-9534(02)00101-0.

A. Hidayat, A. Wibowo, and S. Harnowo, “Energy balance analysis on Rimbo Dua palm oil,” J. Eng. Appl. Technol., Apr. 2021, doi: 10.21831/jeatech.v2i1.39630.

Y. A. Salako, O. Owolarafe, A. Osunleke, I. Olaoye, and A. Atta, “Performance evaluation of a small scale palm fruit biomass-fired autoclave boiler,” Int. J. Agric. Environ. Food Sci., Jun. 2025, doi: 10.31015/2025.2.20.

Z. Effendi, S. Aisyah, and R. Hastyanda, “Fuel Used Analysis on Boiler Efficiency Variations and Water Intake Temperature Affected by Palm Oil Varieties,” vol. 4, pp. 94–105, Mar. 2021, doi: 10.37637/ab.v0i0.634.

M. Mustangin and S. Harnowo, “AUDIT ENERGI LISTRIK DAN BOILER PABRIK KELAPA SAWIT KAPASITAS 60 TON/JAM,” J. Agro Fabr., Jun. 2020, doi: 10.47199/jaf.v2i1.139.

S. Ashfaq and S. R. A. Shukor, “Energy, Exergy and Environmentally Sustainable process analysis of Biomass Boilers using different Palm oil waste,” J. Phys. Sci., Aug. 2025, doi: 10.21315/jps2025.36.2.2.

D. Pasaribu, M. Nur, and Muchammad, “Exergy Analysis of Boiler System Fueled by Palm Shell and Palm Fiber in Medium-Scale Palm Bunch Processing Capacity to Become Crude Palm Oil,” Int. Res. J. Innov. Eng. Technol., Jan. 2025, doi: 10.47001/irjiet/2025.905043.

A. Aziz, S. A. Amin, A. A. Setiawan, and Y. Irwansi, “Pemanfaatan Limbah Kelapa Sawit untuk Pembangkit Listrik di PT. X,” Uranus J. Ilm. Tek. Elektro Sains Dan Inform., Aug. 2025, doi: 10.61132/uranus.v3i3.1033.

A. Gani et al., “Comparative analysis of HHV and LHV values of biocoke fuel from palm oil mill solid waste,” Case Stud. Chem. Environ. Eng., Dec. 2023, doi: 10.1016/j.cscee.2023.100581.

H. Hidayat et al., “Oil palm biomass ash removal for boiler fuel optimization: A case study,” Case Stud. Chem. Environ. Eng., Dec. 2024, doi: 10.1016/j.cscee.2024.101049.

M. N. Rahman, S. Yusup, B. C. L. Fui, I. Shariff, and A. Quitain, “Oil Palm Wastes Co-firing in an Opposed Firing 500 MW Utility Boiler: A Numerical Analysis,” CFD Lett., Feb. 2023, doi: 10.37934/cfdl.15.3.139152.

H. Eteruddin et al., “Coal Fuel Efficiency with Mixed Palm Shell Biomass for Steam Power Plant,” 2021 IEEE Conf. Energy Convers. CENCON, pp. 148–153, Oct. 2021, doi: 10.1109/cencon51869.2021.9627271.

L. Evangelisti, L. Barbaro, C. Guattari, E. De Cristo, R. De Lieto Vollaro, and F. Asdrubali, “Comparison between Direct and Indirect Heat Flux Measurement Techniques: Preliminary Laboratory Tests,” Energies, Jun. 2024, doi: 10.3390/en17122961.

K. Kono et al., “Comprehensive clinical evaluation of indirect and direct bonding techniques in orthodontic treatment: a single-centre, open-label, quasi-randomized controlled clinical trial,” Eur. J. Orthod., vol. 46, Oct. 2024, doi: 10.1093/ejo/cjae036.

A. O. Ernest and O. A. David, “Boiler Efficiency Analysis of A 220mw Steam Power Plant Using Direct Method,” Int. J. Res. Sci. Innov., Jan. 2022, doi: 10.51244/ijrsi.2022.9802.

A. Lahijani, E. Supeni, and F. Kalantari, “A Review of Indirect Method for Measuring Thermalefficiency In Fire Tube Steam Boilers,” J. Ind. Pollut. Control, vol. 34, pp. 1825–1832, Jan. 2018.

Published

2026-02-02

How to Cite

Bayhaqi, I. (2026). Evaluasi Kinerja Boiler Melalui Analisis Losses Guna Optimalisasi Operasional di Pabrik Kelapa Sawit. Jurnal Teknik Mesin Dan Industri (JuTMI), 5(1), 25–32. https://doi.org/10.55331/jutmi.v5i1.80

Issue

Section

Articles